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Brownian motion represents simple diffusion random walk processes. More complex random walk
processes also can occur when probability distributions describing the random jump distances and
times have infinite moments. We explore the manner in which these distributions can arise and how
they underlie various scaling laws that play an important role in both random and deterministic
systems. ©1999 American Association of Physics Teachers.
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I. INTRODUCTION

If you sprinkle powdered charcoal on the surface of al
hol and look at it under a microscope, you will see the ch
coal particles undergoing a random walk. This motion is d
to the alcohol molecules colliding with the larger charco
grains. This experiment was first reported by the Dutch p
sician Jan Ingenhausz in 1785, who is best known as
discoverer of photosynthesis. The observed random wa
known as Brownian motion, after its extensive investigat
by Robert Brown published in 1828. Brown also is know
for making the first observation of a plant cell nucleu
Brownian motion was mysterious in those early days bef
the existence of atoms was demonstrated, and it was
clear why the Brownian particles should jump seemingly
their own. The eventual explanation came from Albert E
stein in 1905,1 but he did not refer to it as Brownian motion
because he had not yet seen Brown’s papers. Einstein
able to determine the mean square displacement of a Bro
ian particle in terms of Avogadro’s number. Jean Perrin w
the 1926 Nobel Prize in physics for determining Avogadr
number in this manner.2

Since 1905, Brownian motion has became the canon
example of a random process.3 Actually, Louis Batchelier in
his 1900 Ph.D. thesis on stock market fluctuations indep
dently derived several mathematical properties of Brown
motion, including the equation for the probabilityP(x,t) for
the positionx of a Brownian random walker at timet, when
the walker starts at the origin at timet50. The equation for
P(x,t) in one dimension is given by

]P~x,t !

]t
5D

]2P~x,t !

]2x
, ~1!

with the Gaussian solution

P~x,t !5
1

A4pDt
e2x2/4Dt, ~2!

and the mean square displacement

^x2~ t !&52Dt. ~3!

Equation~1!, the diffusion equation, was already well know
as Fourier’s heat law, and Bachelier was amazed that p
ability could diffuse in the same manner as heat. Note t
the diffusion constantD has units of@x2#/@ t#.
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The diffusion equation does not provide information
the shape of a typical particle trajectory. If we look at sm
displacementsDx in a small timeDt, thenD is given by the
limit ( Dx)2/Dt as bothDx andDt go to zero. BecauseD is
finite, Dx/Dt must be infinite, which leads us to conclud
that the velocity,Dx/Dt, of a Brownian particle~the deriva-
tive along a Brownian trajectory curve! is everywhere infi-
nite. Therefore, a Brownian trajectory is infinitely jagged a
care is needed to mathematically analyze Brownian traje
ries. Wiener proved that the distance between any two po
on a Brownian trajectory is infinite, because the trajectory
actually two-dimensional, and not a simple curved line. W
can avoid these mathematical difficulties of the Browni
trajectory if we consider the random walk motion to ta
place on a periodic lattice with jumps occurring at a regu
rate. In this case the trajectory is a connected path of stra
line pieces. In the long time~many jump! limit, the solution
for the random walk on a lattice approaches the behavio
Eqs.~1!–~3!.

The purpose of this article is to discuss random walks
which Eqs.~1!–~3! are no longer applicable. This situatio
can occur if the walker waits for very long times betwe
jumps ~fractal time!, or if the jumps are of very large dis
tances~Levy flights!. For fractal time random walks, th
mean square displacements are slower than Brownian
tion; this type of random walk refers to the ‘‘below’’ Brown
ian motion in the title. For Levy flights we will introduce
velocity for the jumps that is related to the jump distanc
This velocity will allow us to discuss turbulent diffusion fo
which the mean square displacement grows as the t
power of time, in contrast to the first power for Brownia
motion.4 This behavior refers to the ‘‘above’’ Brownian mo
tion in the title. We will also discuss trajectories in determi
istic systems where nonlinearities create a wide distribut
of trajectory lengths. The description of these determinis
systems fits within the framework of Levy flight type rando
walks. Because these systems are deterministic and not
dom, we refer to them in the title as ‘‘beyond’’ Brownia
motion.5

II. LONG-TAILED DISTRIBUTIONS IN PHYSICS

In the early 1700’s a coin tossing problem was posed
Nicolas Bernoulli that yielded a surprising result. The pro
lem was later discussed by Daniel Bernoulli in the Comm
1253© 1999 American Association of Physics Teachers
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tary of the St. Petersburg Academy, and became know
the St. Petersburg paradox.6 The paradox involves calculat
ing the average winnings in a game of chance. The gam
simple to describe. Flip a coin. If a head comes up, you w
one coin and the game ends. This case occurs with prob
ity 1/2. If you get a tail, then flip again. Continue flippin
until a head comes up for the first time. If you obtain pr
ciselyN tails prior to the first head, you are rewarded with
win of 2N coins. The probability for this event is (1/2)N11.
So you can win one coin with probability 1/2, two coins wi
probability 1/4, etc. We can see a regular pattern deve
where winning an order of magnitude more~in base 2! oc-
curs with an order of magnitude less probability. The me
winning is @13(1/2)123(1/4)143(1/8)1¯#. This sum
adds 1/2 an infinite number of times, making the mean w
ning infinite. The result was considered a paradox beca
the notion of a probability distribution with an infinite firs
moment seemed ill posed.~The probabilities for all possible
events adds up to unity, so that is not the problem.! The
paradox arises because we are trying to determine the m
of a distribution that does not possess one. In particular,
lack of a finite first moment means that we cannot determ
an ante to make the game fair. A banker would need to h
an infinite ante because this amount is her expected los
player would prefer a small ante because 1/2 of the time
will win one coin, 3/4 of the time he will win two coins o
fewer, 7/8 of the time four or fewer coins, 15/16 of the tim
eight or fewer coins, etc. Much of the early commentary
this paradox centered around limiting the number of time
coin could be tossed, and thus limiting the amount of w
nings.

It is not difficult to produce random variables whose pro
ability densities have long tails with infinite moments. W
give a few examples in the following. If the distribution of
random variable peaks at the origin, then the distribution
the inverse of this variable may have a slow decay at la
values of the variable. For example, let the random varia
x have a Gaussian probability densityg(x) with zero mean
and unit variance:

g~x!5~2p!21e2x2/2. ~4!

The random variabley51/x has the probability densityf (y)
which is related tog(x) by

f ~y!dy5g~x!dx5~2p!21e21/2y2 dy

y2 . ~5!

The distributionf (y) in Eq. ~5! has an infinite variance be
causef (y) goes to zero for largey as 1/y2.

The Gaussian distribution arises as the probability lim
distribution for a sum of identically distributed random va
ables. The lognormal distribution arises as a probability d
tribution for a product of identically distributed random va
ables. That is, the lognormal is a Gaussian distribution
the variable log(x). If m(x) is the lognormal probability dis-
tribution ~with x measured in units of̂x&) with unit variance
andg(x) is the Gaussian, then

m~x!dx5g~ logx!d~ logx!5g~ logx!
dx

x
, ~6!

and hence
1254 Am. J. Phys., Vol. 67, No. 12, December 1999
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m~x!5
1

x

1

A2p
e2(log x)2/2. ~7!

We see from Eq.~7! that there will be some intermediat
range ofx values for whichm(x) behaves like it is slowly
decaying as 1/x.

Next consider a light source at pointA that releases pho
tons that travel in straight lines through random anglesu and
strike a wall one unit away in thex-direction and a distance
L units away in they-direction. If the angleu has a distribu-
tion f (u) uniformly distributed between2p/2 andp/2, then
f (u)51/p. The distribution of anglesu will induce a distri-
bution of hitting pointsg(y) along the wall given by

f ~u!du5
1

p
du5g~y!dy, ~8!

where

u5tan21 y and
du

dy
5

1

11y2 . ~9!

We can use Eqs.~8!–~9! to solve forg(y) as

g~y!5
1

p

1

11y2 . ~10!

The probability distributiong(y) is the Cauchy distribution,
which has an infinite second moment.

As an example of a long-tailed distribution in time, co
sider a particle in a potential well of heightV. Suppose that
the time the particle spends in the well is given by t
Arrhenius law,

t5n21eV/kT, ~11!

wheren is a frequency,k is Boltzmann’s constant, andT is
the temperature. Let the barrier heightV be a random vari-
able governed by the probability densityf (V), where

f ~V!5e2V/V0, ~12!

that is,V0 is the width of the distribution. This distribution o
barrier heights induces a distribution of trapping times,

c~t!5 f ~V!
dV

dt
. ~13!

Using Eqs.~11!–~13! we find the distribution of trapping
times to be7

c~t!5kTn2bt2(11b), ~14!

whereb5kT/V0 .
We are interested in the long time behavior ofc(t). If

there is a minimum barrier height greater than zero, thet
will always be greater than zero, and we can ignore the s
time singularity in Eq.~14!. A value ofb.0 ensures that the
probability is normalized. Ifb,1, the mean time for hop-
ping over a barrier is infinite. This case does not mean t
every hop has an infinite waiting time. It just means th
waiting times of all possible values arise, such that none
them dominate and there is no characteristic waiting tim
This case is like the St. Petersburg paradox where not e
player wins an infinite amount of coins, although the me
winnings are infinite. Ifb>1, the mean jump time is finite
and the jump events occur with a finite average frequenc
1254Shlesinger, Klafter, and Zumofen
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The above examples demonstrate that it is not difficul
obtain probability distributions with infinite moments.

III. FRACTAL TIME

Let us look at the case of infinitêt& in a more genera
context than Eq.~14!. Consider the Laplace transform of th
waiting-time density,

c* ~s![E
0

`

c~ t !e2stdt5 (
n50

`
~21!n

n!
sn^tn&, ~15!

where^tn& is thenth moment ofc(t). This expansion holds
only if all the moments ofc(t) are finite. In this case,

c* ~s!'12s^t&'
1

11s^t&
~for small s!, ~16!

and at long times,

c~ t !'
1

^t&
e2t/^t&. ~17!

The probability density for makingn jumps in timet would
be

cn~ t !5
1

n! ^t&n e2t/^t&, ~18!

which is the Poisson distribution.
Let us consider a case where the first and all higher m

ments of the the distribution are infinite, and the Poiss
distribution does not apply. We choose the form ofc(t) as

c~ t !5
12q

q (
j 51

`

qjl je2l j t ~l,q,1!. ~19!

Equation~19! for c(t) satisfies a scaling form, with an orde
of magnitude longer waiting time~in base 1/l) occurring an
order of magnitude less often~in base 1/q). This form of
c(t) allows for a hierarchy of weighted possibilities inclu
ing extreme events~very long waiting times!. This form can
be a good description of charge hopping waiting times
glassy materials.7,8 The waiting-time distribution in Eq.~19!
is easily checked to be normalized to unity, but the condit
l,q,1 leads tô t& being infinite, that is,

^t&5
12q

q (
j 51

` S q

l D j

5` ~l,q,1!. ~20!

If this condition is not satisfied, then the long waiting tim
are not weighted heavily enough to make the first momen
the distribution infinite. In that case the waiting-time dist
bution would be characterized by a finite mean waiting tim
and the Poisson distribution would become valid at tim
much larger than the mean waiting time.

How can we proceed with a power series expansion
c* (s)? We calculate the Laplace transform of Eq.~19! term
by term to obtainc* (s) as

c* ~s!5
12q

q (
j 51

`
~ql! j

s1l j . ~21!

This scaling relation satisfies

c* ~s!5qc* S s

l D1
l~12q!

s1l
, ~22!
1255 Am. J. Phys., Vol. 67, No. 12, December 1999
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and that allows us to determine the noninteger exponen
the expansion ofc* (s). A noninteger exponent must com
from the homogeneous part of the equation,c* (s)
5qc* (s/l), which has a solution of the form

c* ~s!'sb, ~23!

with

b5
ln q

ln l
. ~24!

The asymptotic behavior ofc* (s) for small s and larget is
given by

c* ~s!'12sb1O~s! ~s→0!, ~25!

and as in Eq.~14!,

c~ t !'t212b ~ t→`!. ~26!

The first term in Eq.~25! appears because ats50, c* (s)
51, which reflects the normalization of the probability
unity. If b.1, then^t& is finite, and thes term dominates the
sb term in Eq.~25! for small s, so that the standard Poisso
behavior returns when̂t& is finite. The condition,l,q
,1, which makeŝ t& infinite, also keepsb,1. The expres-
sion forc(t) in Eq. ~25! with b,1 represents afractal time
random process, because if we draw points on a time
when jumps occur, the set of points would look like a ra
dom Cantor set with fractal dimensionb.6,8 The number of
jumps grows in a timet astb and not ast. This dependence
implies that the jumps do not occur at a well-defined ra
Such behavior can occur if the jump times fall in a hierarc
of clusters that does not possess a well-defined mean wa
time.

In analyzing random walks we must account for all po
sible jumps and the timing of these jumps.9 The terms in
Laplace space,

1

12c* ~s!
511c* ~s!1@c* ~s!#21¯1@c* ~s!#n

1¯ , ~27!

account for 1,2,...,n,..., jumps occurring in a timet. From
Eq. ~25!, 1/@12c* (s)# will produce a factor ofs2b if ^t& is
infinite. The fractal time probability is the key to understan
ing how the exponentb arises in the dispersive transport th
is discussed in the next section.

IV. DISPERSIVE TRANSPORT

The mechanism of fractal time has been used to desc
charges~electrons or holes! moving in glassy materials, spe
cifically in thin amorphous semiconductor films used
xerography.7,8 The charges are trapped in a random enviro
ment and their release is governed by a long tailed distri
tion as in Eq.~26!. The current generated by the motion
the charges is measured when the sample is placed i
electric field. In an electric field the charges tend to move
one direction, that is, they undergo a biased random wal
the direction of the net force on them. The randomness in
charge motion comes from the variability of when the walk
jumps, rather than the jump length itself. Each jump ha
mean distancêd(E)&, which we assume is proportional t
1255Shlesinger, Klafter, and Zumofen
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the electric fieldE. The mean distance covered after a timt
can be calculated for a fractal time random walk governed
an exponentb and is given by7,8

^ l ~ t !&'^d~E!&tb'Etb. ~28!

The exponentb would be unity for a standard random wa
where jumps occur at a regular rate. Forb,1, this type of
motion is called ‘‘dispersive transport.’’7 It is slower than
Brownian motion because the random walkers have an
nite mean waiting time.

If the thin film has a lengthL, then at some timeT the
mean position of a packet of charges will be equal toL.
When the mean position of a charge isL, we have from Eq.
~28!,

L'ETb, ~29!

or

1

T
'S E

L D 1/b

. ~30!

The nonlinear dependence ofT on L andE in Eq. ~30! was
first viewed as paradoxical. Eventually it was apprecia
that this behavior was a consequence of deep traps tha
duce the long waiting times described by the fractal ti
waiting distribution.

V. SLOW RELAXATION

Slow relaxation in glassy materials has been discusse
the context of a model of fractal time transport. Consider
problem of dielectric relaxation of a glass involvin
frozen-in dipoles that can be relaxed only when it is hit by
mobile defect. This problem involves the first passage ti
of random walkers~defects! for reaching the origin~the
frozen-in dipole!. Suppose that there areV lattice sites andN
walkers initially randomly distributed among these sites,
including the origin. The probability densityF(t) that none
of the walkers has reached the origin by timet is given by

F~ t !5F12
1

V E drE
0

t

F~r ,t!dtGN

, ~31!

whereF(r ,t) is the probability density that a walker startin
at site r reaches the origin for the first time at timet. The
integral allows for the first passage of a walker to the ori
in the interval (0,t). The factor of 1/V enters as the probabil
ity of a walker starting at a site, and a sum over all possi
starting points for a walker is performed. The bracket cal
lates the probability that a particular walker has not reac
the origin and it is raised to theNth power for the probability
that none of the walkers has yet reached the origin. T
problem is easier in the limitV and N→`, with the ratio
c5N/V remaining constant. In this limit, we obtain6

F~ t !5expF2c(
l
E

0

t

F~ l ,t!dtG5e2cS(t), ~32!

whereS(t) is the number of distinct sites a walker visits
time t. The simplification involvingS(t) was accomplished
by noting that any of the sites from which a walk can rea
the origin in a timet are exactly the same sites a walk
starting at the origin can reach in timet. The functionS(t)
has the following form for both random walk jumps go
1256 Am. J. Phys., Vol. 67, No. 12, December 1999
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S~ t !'e2atb, ~33!

wherea is a constant. We have found that theb,1 case,
which gives a ‘‘stretched exponential,’’ is a probability lim
distribution in that the result only depends on having an
finite mean waiting time for a defect to jump, and not on t
specific form of the waiting time distribution.

VI. LEVY FLIGHTS AND DRIVES

Let SN be the sum ofN identically distributed random
variables with zero mean and variances2, that is,SN5X1

1¯1XN . This sum constitutes a random walk ofN steps.
For walks with finite jump variances, the central limit the
rem implies that

pN~x!5 lim
N→`

ProbFx,
SN

AN
,x1dxG

5~2pNs2!21/2e2x2/2Ns2
. ~34!

The mathematics of probability distributions with infinit
moments was investigated by Paul Levy in the 1930’s.3,10,9If
the variance of each jump is infinite, then the variance oN
jumps is also infinite. This latter behavior implies that t
probability distribution of the sum ofN steps should have a
similar form as the probability distribution of a single ste
This property is similar to the properties of fractals and rai
the question of when does the whole@the probability distri-
bution pN(x) of the sum# look like its parts@the probability
distribution of a single stepp(x)]. Levy found for infinite
variance random walks that the Fourier transform ofp(x)
has the formp̃(k)5exp(2ukub) with b,2. The Gaussian dis
tribution corresponds tob52, and the Cauchy distribution
f (x)5(2/p)(11x2)21 corresponds tob51. This behavior
is reminiscent of our analysis of fractal time where nonin
ger exponents entered and signaled self-similar behavior
infinite moments of a probability distribution. In the prese
case the moments are spatial rather than temporal.

Let us look at a particular case called the Weierstrass
dom walk,11 to illustrate the above discussion. Begin with
random walk on a lattice with the following probabilities fo
jumps of lengthr , where powers ofb give the allowable
jump lengths

p~r !5
q21

2q (
j 50

`

q2 j~d r ,bj1d r ,2bj !. ~35!

According to Eq.~35!, jumps an order of magnitude farthe
~in baseb) occur an order of magnitude less often~in base
q). About q jumps of size unity are made~the j 50 term!
and form a cluster ofq sites, before a jump of lengthb
occurs~the j 51 term!, and aboutq such clusters of visited
sites are formed before a jump of lengthb2 occurs, and so on
until an infinite fractal hierarchy of clusters is formed~see
Fig. 1 for a two-dimensional Weierstrass random wal!.
Compare this to a simple random walk on a square lat
with jumps to nearest neighbor sites~see Fig. 2!. To see the
mathematical condition necessary for this behavior to occ
we examine the Fourier transform ofp(r ):
1256Shlesinger, Klafter, and Zumofen
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p̃~k!5
q21

q (
j 50

`

q2 j cos~kbj !. ~36!

Equation~36! is the famous Weierstrass function which
everywhere continuous, but nowhere differentiable wheb
.q. Note that

^r 2&5 (
r 52`

r 51`

r 2p~r !5
q21

q (
j 50

` S b2

q D j

52
]2

]k2 p̃~k!uk505`,

~37!

whenb2.q. This divergence of the second moment~which
implies the absence of a length scale! is a sign of fractal
self-similar properties. We can write a power series exp
sion of p̃(k), but the coefficient of thêr 2& term is infinite.
As in the case of a fractal time distribution, a scaling eq
tion is employed:

p̃~k!5
1

q
p̃~bk!1

q21

q
cosk. ~38!

We can obtain Eq.~38! by using Eq.~36! once forp̃(bk) and
once forp̃(k) and seeing that their difference is just a sing
cosine term. The homogeneous part of Eq.~38! has a solu-
tion of the formkb with b5 ln q/ln b. An infinite series so-
lution for p̃(k) can be found using Mellin transform
techniques.11 The series expansion has fractional powers,
like a Taylor series expansion that only has integer pow
For smallk ~large distancesr ) p̃(k) behaves as

p̃~k!5e2akb
. ~39!

Levy treated a more general case allowing for a bias
additional parameters, but the above discussion capture
spirit. Although p̃(k) has a simple form, exp(2kb), explicit
forms for p(x) directly in terms of analytic functions are no
derivable in general.

Fig. 1. Typical trajectory of a Levy flight random walk. The mean squ
jump size is infinite. The flight is between the set of jump points and
lines between points are only a guide to the eye.

Fig. 2. A typical trajectory of a walker randomly taking nearest neigh
steps on a square lattice.
1257 Am. J. Phys., Vol. 67, No. 12, December 1999
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Despite the beauty of the self-similar trajectories of Le
flights and the scaling equation forp̃(k), Levy flights were
largely ignored in the physics literature until recently12 be-
cause of their infinite moments.13 This infinity can be tamed
by associating a velocity with each flight trajecto
segment.14,15,5,4We called this random walk with a velocity
Levy driveto distinguish it from theLevy flightwhere the
walker visits only the end points of a jump and the conc
of velocity does not enter. For a single jump in a Levy flig
the walker is only at the starting point and the end point, a
never in between. For a jump in a Levy drive the walk
follows a continuous trajectory between its starting and e
points and a finite time is needed to complete the drive. T
mean square displacement for a jump in a Levy flight
infinite ~and thus not a useful quantity!. For a Levy drive the
random walker moves with a finite velocity and hence
mean square displacement is never infinite, but it is a tim
dependent quantity.

In the continuous-time random walk framework for
Levy drive, we considerC(r ,t) to be the probability density
of making a jump of displacementr in a time t. We write14

C~r ,t !5c~ tur !p~r !, ~40!

or

C~r ,t !5p~r ut !c~ t !, ~41!

wherep(r ) andc(t) have the same meanings as before, a
c(tur ) and p(r ut) are conditional probabilities for a jump
taking a timet given that it is of lengthr , and for a jump
being of lengthr given that it took a timet. A simple choice
for c(tur ) is

c~ tur !5dS t2
r

V~r ! D . ~42!

In the study of turbulent diffusion Kolmogorov assumed
scaling law implying thatV(r );r 1/3. Given this form for
V(r ) and the Levy flight condition of an infinite second m
ment,

p~r !'ur u11b, ~43!

with small enough values ofb so that^r 2&5`, we find for
the mean square displacement,4

^r ~ t !2&5H t3, for b<1/3,

t213(12b)/2, for 1/3<b<5/3,

t for b>1/3.

~44!

The t3 case is called Richardson’s law of turbulent diffusio
It corresponds to a Levy drive with Kolmogorov scaling f
V(r ) combined with a value forb such that the mean time
spent in a segment between two turning points of the tra
tory is infinite. The reason that we did not obtain the us
Levy flight result of^r 2(t)&5` is that by using the coupled
space–time memoryC(r ,t), we did not calculate^r 2&
52]2p̃(k50)/]k2, which would be infinite, but used
* exp(ikr)c(sur)p(r)dr instead ofp̃(k). In effect, we calculate
the distance a walker has gone in a timet, instead of the
length of the flight segment. The average flight segment
be infinitely long, but at a timet the walker has not com
pleted the flight segment. This type of random walk proc
has been used to model turbulent pipe flow.16
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VII. RANDOM WALKS IN NONLINEAR DYNAMICS

The same type of fractal space and time statistics we h
discussed for random systems also appears in dynamical
tems, both dissipative and Hamiltonian.17,13,15,18,19,5,20

A long-tailed distribution for dynamical phase rotatio
with a constant rotation rate corresponding to a Levy dr
was first presented by Geisel and co-workers.15 Their inves-
tigation involved the diffusion of the chaotic phase~the
phase of the wavefunction difference between both side
the junction! in a Josephson junction using a dynamical m
For a constant voltage across the junction, the phase ro
at a fixed rate, but can change direction intermittently;N
complete clockwise rotations correspond to a random w
with a jump of N units to the right, and this jump takes
time proportional toN. This jump does not occur instanta
neously, but like the hand of a clock there is some ti
needed to complete a circuit. Mathematically, a jump
lengthN corresponds to a random drive, and not to a rand
flight. When the mean square value ofN is calculated, it is
found to possess Levy drive behavior, that is, it has an i
nite second moment. An analysis of the data leads to a
of the form15

xt115~11e!xt1axt
z21, ~45!

with e small. The exponentz.1 makes Eq.~45! nonlinear.
Varying z changes the behavior of the mean square displa
ment. The iterations of the map tend to approach and clu
nearx50 andx51. This behavior can be interpreted as t
system remaining in the same rotation state for long tim
The number of iterations clustered in a trajectory nearx50
or x51 depends on the initial condition. Nearby initial co
ditions can lead to vastly different numbers of iteratio
needed to leave these regions. A histogram of the times s
in a rotation state yields a long-tailed distribution just as
have used in random walk problems. The result of a stat
cal analysis averaged over initial conditions is that15

^r 2~ t !&'5
t2, if z52,

t321/(z21), if 3/2,z,2,

t ln t, if z53/2,

t, for 1,z,3/2,

~46!

where N represents the one-dimensional distance from
origin if the rotations were laid out on a line. A positiv
value ofr 5N means that there wereN more full rotations to
the right, than to the left. This behavior corresponds to
constant velocity Levy flight with a long-tailed flight tim
distribution between reversals of motion withc(t)'t212b

andb51/(z21).
In the above example, we can go directly fromz, the

exponent of the map, to the temporal exponentb51/(1
2z) in the mean square displacement.15 In most nonlinear
dynamical systems the connection between the equations
the kinetics is not obvious or simple. In fact, for the stand
map which describes a kicked rotor,19,17,20

xn115xn12pK sin~2pun! ~47a!

un115un1xn11 , ~47b!

there is no apparent exponent for the dynamics of Eq.~47!,
but noninteger exponents abound in the description of
orbit kinetics, hinting at a complex dynamics.13,5 The stan-
1258 Am. J. Phys., Vol. 67, No. 12, December 1999
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dard map and the Zaslavsky map@see Eq.~48!# have surpris-
ingly complicated dynamics depending on the strengthK of
the kick.

For K51.1 for example, a plot ofx vs u shows some
orbits are of the simple closed circular type, while othe
wander chaotically. Still other orbits exhibit periodicity, th
is, uxp2x0u5 l , where a particle moves along thex axis l
units in p iterations, with the velocityl /p. Sticking close to
these orbits provides for the segments of Levy flights,
because we use periodic boundary conditions, it appears
the particle stays in an almost closed orbit and does not e
into chaotic motions. The fractal nature of these island h
archies, called Cantori because they form a Cantor-like se
tori ~see Figs. 3 and 4!, creates complex kinetics with Lev
probabilities which have been dubbed ‘‘strange kinetics.’13

The probability densities for spending time in laminar sta
near period 3~for K51.1) and period 5~for K51.03) orbits
are long-tailed and have the Levy distribution asympto
form,20 cperiod53't22.2 andcperiod55't22.8. A finer resolu-
tion of the period 3 orbit uncovers a period 7 orbit~see Fig.
4!, and a finer resolution of one of these orbits would find t
subislands for each period 7 orbit. We would find that islan
are composed of sub-islands down to the resolution of
computation.

Predicting these exponents forc(t) for these long-tailed
distributions is difficult. For example, ifK51.1015 rather
than 1.1, the period 3 orbit under further resolution goes t
period 16 orbit, rather than the period 7 orbit. Slightly d
ferent K values can give rise to very different exponen
because the precise island structure changes in a sen
manner. Also for differentK values the new orbits do no
necessarily traverse the hierarchy in the same order. The

Fig. 3. The trajectory of the standard map withK51.1 with periodic bound-
ary conditions in both thex- andy-directions. One sees a period 3 orbit
a chaotic sea. Without the periodic boundary condition in they-direction,
the trajectory would perform a random walk in they-direction.

Fig. 4. Higher resolution plot of the period 3 island of theK51.1 standard
map showing a 7-fold orbit structure. Each of these 7 islands under hi
resolution would reveal 10 subislands. This islands within islands struc
will continue indefinitely.
1258Shlesinger, Klafter, and Zumofen
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cape times from a level of the hierarchy are not a sim
function of the distance from the island.20,17,5

Another example of Levy drives in dynamical systems
the orbits in the Zaslavsky map, which describes a kick
oscillator,18,19

un115~un1K sinvn!cosa1vn sina, ~48a!

vn1152~un1K sinvn!sina1vn cosa, ~48b!

where a52p/q. The orbits form an intricate fractal web
with q-fold symmetry throughout the two-dimensional (u,v)
phase space. This map only has simple trigonometric non
earities, but like the standard map, it requires noninteger
ponents for its characterization of trajectories.

As nonlinear and complex systems become better stud
it has been found that very intricate trajectories domin
transport and mixing in these systems. For example, this
havior applies to the standard map and physically this beh
ior is sought in systems from nonlinear devices to weat
patterns. The study of generalizations of random walks
stochastic and nonlinear deterministic systems presents m
new problems and opportunities to advance our knowle
of fluctuations beyond the classic Brownian motion work
Einstein.

APPENDIX: SUGGESTED PROBLEMS

1. Write a program to simulate a simple random walk w
constant size jumps of equal probability in thex- and
y-directions. Start the random walker at the center o
circle. Determine how many jumps it takes to exit t
circle of radiusa. Determine how the exit time of the
walker depends on the radius of the circle.

2. Write a program to simulate the St. Petersburg ga
Make a histogram of your winnings. Determine how yo
mean winnings increase with the number of times that y
play.

3. Compare the shape of the Gaussian and the Cauchy
tributions by plotting the distributions on the same grap
Note that the Cauchy distribution has more weight in
tails so larger values are more probable than for
Gaussian.

4. For a probability waiting time density of the form o
c(t)51/(11t3/2), write a program to calculate a se
quence of waiting times. How many jumps occur in a tim
T? IncreaseT to determine how the number of jump
N(T) depends onT. @The answer isN(T)}T1/2. For a
waiting-time density with a finite first momentN(T)
should grow asT.]

5. Study numerically the standard map, Eq.~47!, for K
1259 Am. J. Phys., Vol. 67, No. 12, December 1999
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51.1. Find the period 3 orbits in the chaotic sea and th
use higher resolution to find the period 7 and period
orbits. Determine how far down the hierarchy of islan
you can go.

6. Iterate the four-fold symmetric (q54 case! Zaslavsky
map, Eq.~48! with K56.349972 and look for Levy-type
behavior. See if similar behavior can be found for otherK
values. Look at other symmetry cases of the Zaslav
map.

1A. Einstein, ‘‘On the motion, required by the molecular-kinetic theory
heat, of particles suspended in a fluid at rest,’’ Ann. Phys.~Leipzig! 17,
549–560~1905!.

2J. Perrin,Les Atomes, 4th ed.~Libairie Alcan, Paris, 1914!.
3E. W. Montroll and M. F. Shlesinger, ‘‘On the wonderful world of rando
walks,’’ in Studies in Statistical Mechanics, edited by J. L. Lebowitz and
E. W. Montroll ~North-Holland, Amsterdam, 1984!, Vol. 11, pp. 1–121.

4M. F. Shlesinger, B. J. West, and J. Klafter, ‘‘Levy dynamics of enhanc
diffusion: application to turbulence,’’ Phys. Rev. Lett.58, 1100–1103
~1987!.

5J. Klafter, M. F. Shlesinger, and G. Zumofen, ‘‘Beyond Brownian m
tion,’’ Phys. Today49, 33–39~1996!.

6M. F. Shlesinger, ‘‘Fractal time in condensed matter,’’ Annu. Rev. Ph
Chem.39, 269–290~1988!.

7G. Pfister and H. Scher, ‘‘Dispersive non-Gaussian transient transpo
disordered solids,’’ Adv. Phys.27, 747–798~1978!.

8H. Scher, M. F. Shlesinger, and J. T. Bendler, ‘‘Time-scale invariance
transport and relaxation,’’ Phys. Today44, 26–34~1991!.

9M. F. Shlesinger, ‘‘Random processes,’’ in theEncyclopedia of Applied
Physics~Springer-Verlag, Berlin, 1996!, Vol. 16, p. 45.

10P. Levy,Theorie de L’addition des Variables Aleatoires~Gauthier-Villars,
Paris, 1937!.

11B. D. Hughes, M. F. Shlesinger, and E. W. Montroll, ‘‘Random wal
with self-similar clusters,’’ Proc. Natl. Acad. Sci. USA78, 3287–3291
~1981!.

12M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, inLevy Flights and
Related Topics in Physics~Springer-Verlag, Berlin, 1995!.

13M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, ‘‘Strange kinetics
Nature~London! 263, 31–38~1993!.

14M. F. Shlesinger, J. Klafter, and Y. M. Wong, ‘‘Random walks with infi
nite spatial and temporal moments,’’ J. Stat. Phys.27, 499–512~1982!.

15T. Geisel, J. Nierwetberg, and A. Zacherl, ‘‘Accelerated diffusion
Josephson-junctions and related chaotic systems,’’ Phys. Rev. Lett54,
616–619~1985!.

16F. Hayot, ‘‘Levy walk in lattice gas hydrodynamics,’’ Phys. Rev. A43,
806–810~1991!.

17J. Klafter, G. Zumofen, and M. F. Shlesinger, ‘‘Fractal description
anomalous diffusion in dynamical systems,’’ Fractals1, 389–404~1994!.

18G. M. Zaslavsky, M. Edelman, and B. A. Niyazov, ‘‘Self-similarity, reno
malization, and phase space nonuniformity of Hamiltonian chaotic dyn
ics,’’ Chaos1, 159–181~1991!.

19G. M. Zaslavsky,Physics of Chaos in Hamiltonian Systems~Imperial Col-
lege Press, London, 1998!.

20J. Klafter and G. Zumofen, ‘‘Levy statistics in a Hamiltonian system
Phys. Rev. E49, 4873–4877~1994!.
1259Shlesinger, Klafter, and Zumofen


