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Brownian motion represents simple diffusion random walk processes. More complex random walk
processes also can occur when probability distributions describing the random jump distances and
times have infinite moments. We explore the manner in which these distributions can arise and how
they underlie various scaling laws that play an important role in both random and deterministic
systems. ©1999 American Association of Physics Teachers.

[. INTRODUCTION The diffusion equation does not provide information on
the shape of a typical particle trajectory. If we look at small
If you sprinkle powdered charcoal on the surface of alco-gisplacementa x in a small timeAt, thenD is given by the
hol and look at it under a microscope, you will see the charqjy;t (Ax)2/At as bothAx andAt go to zero. Becausb is
coal particles undergoing a random walk. This motion is du§;yita “ Ax/At must be infinite, which leads us to conclude

to the alcohol molecules colliding with the larger charcoal . : . .
grains. This experiment was first reported by the Dutch phy:[.hat the velocity Ax/At, of a Brownian particldthe deriva-

sician Jan Ingenhausz in 1785, who is best known as thilve along a Brownian trajectory curvés everywhere infi-

discoverer of photosynthesis. The observed random walk jgite. Therefore, a Brownian trajectory is infinitely jagged and

known as Brownian motion, after its extensive investigationc.are is needed to mathematically analyze Brownian trajecto-

by Robert Brown published in 1828. Brown also is known ries. Wiener proved that the distance between any two points
for making the first observation of a plant cell nucleus.On & Brownian trajectory is infinite, because the trajectory is
Brownian motion was mysterious in those early days beforéCtually two-dimensional, and not a simple curved line. We
the existence of atoms was demonstrated, and it was ngg"n avoid these mathematical difficulties of the Brownian
clear why the Brownian particles should jump seemingly on rajectory if we consider the random walk motion to take

their own. The eventual explanation came from Albert Ein-P/2C€ on @ periodic lattice with jumps occurring at a regular
stein in 1905. but he did not refer to it as Brownian motion, ate- I this case the trajectory is a connected path of straight
because he had not yet seen Brown’s papers. Einstein wige pieces. In the long timémany jump limit, the solution

able to determine the mean square displacement of a Brow or th(el)ra(r;’;iom walk on a lattice approaches the behavior of
gs.(1)—(3).

lan particle in terms of Avogadro’s number. Jean Perrin wo The purpose of this article is to discuss random walks for
the 1926 Nobel Prize in physics for determining Avogadro Swhich Egs.(1)—(3) are no longer applicable. This situation

number in this manner. f&an occur if the walker waits for very long times between

Since 1905, Brownian motion has became the canonic mps (fractal ima, or if the jumps are of very large dis-
example of a random proced#ctually, Louis Batchelier in  1YMP ime, or | Jump: very large di
tances(Levy flights). For fractal time random walks, the

his 1900 Ph.D. thesis on stock market fluctuations indepen- ean sauare displacements are slower than Brownian mo-
dently derived several mathematical properties of Browniarﬂ] 9 P

S . . . on; this type of random walk refers to the “below” Brown-
motion, including the equation for the probabilig(x,t) for ian motion in the title. For Levy flights we will introduce a

the positionx of a Brownian random walker at time when ooty for the jumps that is related to the jump distance.
the walker starts at the origin at tinte0. The equation for - Thjs velocity will allow us to discuss turbulent diffusion for

P(x,t) in one dimension is given by which the mean square displacement grows as the third
IP(x,t) PP(x,1) power ?f time, in contrast to the first power for B.rownian
= —, (1)  motion.” This behavior refers to the “above” Brownian mo-
at X tion in the title. We will also discuss trajectories in determin-
with the Gaussian solution istic systems where nonlinearities create a wide distribution

of trajectory lengths. The description of these deterministic
systems fits within the framework of Levy flight type random

— —x2/4Dt
P(x,0)= e, (2 \walks. Because these systems are deterministic and not ran-
47Dt ) . » » ;
dom, we refer to them in the title as “beyond” Brownian
and the mean square displacement motion®
(x?(t))=2Dt. ©)

Equation(1), the diffusion equation, was already well known Il. LONG-TAILED DISTRIBUTIONS IN PHYSICS

as Fourier's heat law, and Bachelier was amazed that prob- In the early 1700’s a coin tossing problem was posed by
ability could diffuse in the same manner as heat. Note thaNicolas Bernoulli that yielded a surprising result. The prob-
the diffusion constanb has units of x?]/[t]. lem was later discussed by Daniel Bernoulli in the Commen-

1253 Am. J. Phys67 (12), December 1999 © 1999 American Association of Physics Teachers 1253



tary of the St. Petersbhurg Academy, and became known as 1 1
the St. Petersburg paradoxhe paradox involves calculat- m(x)=— —
ing the average winnings in a game of chance. The game is X \2m
simple_to dedssl:{]ibe. Flip a ((:join_.r::.a head comes uf[)h youbwti). e see from Eq(7) that there will be some intermediate
one coin and the game ends. This case occurs with probabil- . oo

ity 1/2. If you get a tail, then flip again. Continue flipping ange'ofx values for whichm(x) behaves like it is slowly
until a head comes up for the first time. If you obtain pre-decaying as ¥. ,

cisely N tails prior to the first head, you are rewarded with a_ Vet consider a light source at poiAtthat releases pho-
win of 2N coins. The probability for this event is (1/9)*. tor)s that travel in stra|ght Imes thro.ugh'random angla:md
So you can win one coin with probability 1/2, two coins with Str'k? a wall one unit away In the-direction and a qhspance
probability 1/4, etc. We can see a regular pattern deve|o}5 units away in they—.dlrgctmn. If the angled has a distribu-
where Winning an order of magnitude mdﬂe base 2 ocC- tion f(0) Unlformly distributed betweenr /2 and’7T/2, then
curs with an order of magnitude less probability. The mearf(6)=1/a. The distribution of angle$ will induce a distri-
winning is[1X (1/2)+2X (1/4)+4X (1/8)+---]. This sum  bution of hitting pointsg(y) along the wall given by

adds 1/2 an infinite number of times, making the mean win- 1

ning infinite. The result was considered a paradox because f(g)dg=— do=g(y)dy, (8)
the notion of a probability distribution with an infinite first ™

moment seemed ill posedl'he probabilities for all possible

e (log x)2/2_ )

: : where
events adds up to unity, so that is not the probjefrhe
paradox arises because we are trying to determine the mean . de 1
of a distribution that does not possess one. In particular, the ¢=tan "y and dy  1+y? ©

lack of a finite first moment means that we cannot determine

an ante to make the game fair. A banker would need to havé/e can use Eqg¢8)—(9) to solve forg(y) as
an infinite ante because this amount is her expected loss. A
player would prefer a small ante because 1/2 of the time he
will win one coin, 3/4 of the time he will win two coins or
fewer, 7/8 of the time four or fewer coins, 15/16 of the time The probability distributiorg(y) is the Cauchy distribution,
eight or fewer coins, etc. Much of the early commentary ONyhich has an infinite second moment

this paradox centered around limiting the number of times a* , &' | example of a long-tailed distribution in time, con-

coin could be tossed, and thus limiting the amount of WiN-cer a particle in a potential well of heightt Suppose that

nings. . . ) SR
It is not difficult to produce random variables whose prob—the time the particle spends in the well is given by the
Arrhenius law,

ability densities have long tails with infinite moments. We
give a few examples in the following. If the distribution of a r=v leVkT (11)
random variable peaks at the origin, then the distribution of ) ) )
the inverse of this variable may have a slow decay at larg&herev is a frequencyk is Boltzmann’s constant, anfl is
values of the variable. For example, let the random variabléhe temperature. Let the barrier heightbe a random vari-
x have a Gaussian probability densgyx) with zero mean able governed by the probability densit(V), where

and unit variance: f(V):e‘V’VO, (12)

g(x)=(2m) te X2, (4)  thatis,V, is the width of the distribution. This distribution of
barrier heights induces a distribution of trapping times,

1
a(y)= 7 1Hy? (10

The random variablg=1/x has the probability densiti(y)

C dv
which is related tay(x) by l//(T):f(V)E' (13
dy i i istributi [
_ _ —1-12y2 2 Using Egs.(11)—(13) we find the distribution of trapping
f(y)dy=g()dx=(2m)te ¥ 7. ® " times to bé

The distributionf(y) in Eq. (5) has an infinite variance be- () =KTv Fr (70, (14)
causef(y) goes to zero for largg as 1§2. where 3=KkT/V,.

The Gaussian distribution arises as the probability limit We are interested in the |0ng time behavior,ﬁ(f/;-)_ If
diStI’ibutiOI’l fOI‘ a sum of identica"y distributed random Val’i- there is a minimum barrier he|ght greater than Zero, then
ables. The lognormal distribution arises as a probability disyyi|| always be greater than zero, and we can ignore the short
tribution for a product of identically distributed random vari- tjme singularity in Eq(14). A value of 3>0 ensures that the
ables. That is, the lognormal is a Gaussian distribution forprobability is normalized. 1f8<1, the mean time for hop-
the variable log). If m(x) is the lognormal probability dis-  ,ing over a barrier is infinite. This case does not mean that
tribution (with x measured in units gfx)) with unit variance every hop has an infinite waiting time. It just means that
andg(x) is the Gaussian, then waiting times of all possible values arise, such that none of

them dominate and there is no characteristic waiting time.

dx This case is like the St. Petersburg paradox where not every
m(x)dx=g(logx)d(logx)=g(logx) =, ®  player wins an infinite amount of coins, although the mean
winnings are infinite. If3=1, the mean jump time is finite
and hence and the jump events occur with a finite average frequency.
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The above examples demonstrate that it is not difficult tcand that allows us to determine the noninteger exponent in

obtain probability distributions with infinite moments.

lll. FRACTAL TIME

Let us look at the case of infinitg) in a more general
context than Eq(14). Consider the Laplace transform of the
waiting-time density,

9= wwesa-3

n=

(—n°
n!

s(t"), (19

where(t") is thenth moment ofis(t). This expansion holds
only if all the moments of(t) are finite. In this case,

1
and at long times,
1
~__ o tt)
O~ € v, (17)

The probability density for making jumps in timet would
be

(= rmme (18)

which is the Poisson distribution.

the expansion off* (s). A noninteger exponent must come
from the homogeneous part of the equatio} (s)
=qu* (s/\), which has a solution of the form

P* (s)~sP, (23
with
|
_ % (24)

The asymptotic behavior af* (s) for smalls and larget is
given by

J*(s)=1—-sP+0(s) (s—0), (25)
and as in Eq(14),
P(~t 17 F (t—ow). (26)

The first term in Eq.(25) appears because at0, ¢*(s)

=1, which reflects the normalization of the probability to
unity. If 3>1, then(t) is finite, and thes term dominates the

sP term in Eq.(25) for smalls, so that the standard Poisson
behavior returns whert) is finite. The condition,\<q

<1, which makesgt) infinite, also keepg<1. The expres-
sion for (t) in Eq. (25) with 8<1 represents &actal time
random process, because if we draw points on a time axis
when jumps occur, the set of points would look like a ran-
dom Cantor set with fractal dimensigg®® The number of

Let us consider a case where the first and all higher mo- .

ments of the the distribution are infinite, and the Poissoﬂ

distribution does not apply. We choose the formydt) as

,2’1 grhe ™M (A<g<1).

1-¢q

()= —— 19
q

Equation(19) for ¢(t) satisfies a scaling form, with an order
of magnitude longer waiting timén base I{) occurring an
order of magnitude less oftefin base 1g). This form of
() allows for a hierarchy of weighted possibilities includ-
ing extreme eventévery long waiting timegs This form can

be a good description of charge hopping waiting times in

glassy materialé® The waiting-time distribution in Eg(19)
is easily checked to be normalized to unity, but the conditio
A<g<1 leads to(t) being infinite, that is,

1-g9 = j
H=-""3 (%) = (A<q<1). (20
q j=1

umps grows in a timé ast? and not ag. This dependence
Implies that the jumps do not occur at a well-defined rate.
Such behavior can occur if the jump times fall in a hierarchy
of clusters that does not possess a well-defined mean waiting
time.

In analyzing random walks we must account for all pos-
sible jumps and the timing of these jumpdhe terms in
Laplace space,

=1+y*(9) +[Y* ()P4 - +[y*(9)]"
: (27)

, jumps occurring in a timé. From

1
1= y*(s)

account for 1,2,.,n,...

r\Eq. (25), 11— ¢* (s)] will produce a factor o™ # if (t) is

infinite. The fractal time probability is the key to understand-
ing how the exponeng arises in the dispersive transport that
is discussed in the next section.

If this condition is not satisfied, then the long waiting times

are not weighted heavily enough to make the first moment of
the distribution infinite. In that case the waiting-time distri- IV. DISPERSIVE TRANSPORT
bution would be characterized by a finite mean waiting time,

and the Poisson distribution would become valid at times 1€ Mechanism of fractal time has been used to describe

much larger than the mean waiting time.
How can we proceed with a power series expansion o
J* (s)? We calculate the Laplace transform of E49) term

chargedelectrons or holesmoving in glassy materials, spe-
f:ifically in thin amorphous semiconductor films used in
xerography’:® The charges are trapped in a random environ-

ment and their release is governed by a long tailed distribu-

by term to obtain™ (s) as tion as in Eq.(26). The current generated by the motion of

1-g< (gn)! the charges is measured when the sample is placed in an
Jr(s)=—— E T (22 electric field. In an electric field the charges tend to move in
q f=1stA one direction, that is, they undergo a biased random walk in
This scaling relation satisfies the direction of the net force on them. The randomness in the
charge motion comes from the variability of when the walker
o (S)=qu* f) + A(1-0) 22) jumps, rather than the jump length itself. Each jump has a
N S+A mean distancéd(E)), which we assume is proportional to
1255 Am. J. Phys., Vol. 67, No. 12, December 1999 Shlesinger, Klafter, and Zumofen 1255



the electric fieldE. The mean distance covered after a time erned by finite(t) (8=1) and infinite(t) (8<1):
can be calculated for a fractal time random walk governed by o
an exponenp3 and is given b{?® S(t)~e ", (33

(I(t))~(d(E))tP~EtA. (28)  wherea is a constant. We have found that tBe<1 case,
which gives a “stretched exponential,” is a probability limit
h ; ¢ | ; 1 this t f distribution in that the result only depends on having an in-
Where jumps OCC}‘”.a a regular rate. 7%( » IS ype 0T ginite mean waiting time for a defect to jump, and not on the
motion is callgd dispersive transport.”It is slower than_ specific form of the waiting time distribution.
Brownian motion because the random walkers have an infi-
nite mean waiting time.

If the thin film has a length., then at some tim& the
mean position of a packet of charges will be equalLto VI. LEVY FLIGHTS AND DRIVES
When the mean position of a chargelLiswe have from Eq.
(29), Let Sy be the sum ofN identically distributed random

variables with zero mean and varianed, that is, Sy=X;

The exponenp would be unity for a standard random walk

L~ET?, (29 : .
+--++ Xy . This sum constitutes a random walk [gfsteps.

or For walks with finite jump variances, the central limit theo-

1 £\ VB rem implies that

+=Ic] %0 . S

. ] pn(X) = lim Proh x<—=<x+dx

The nonlinear dependence Bfon L andE in Eq. (30) was N JN
first viewed as paradoxical. Eventually it was appreciated o122 IoNa?
that this behavior was a consequence of deep traps that in- =(2mNg?)~ e /N, (34)

duce the long waiting times described by the fractal tim

" T ®The mathematics of probability distributions with infinite
waiting distribution.

moments was investigated by Paul Levy in the 1933%°
the variance of each jump is infinite, then the variancél of
V. SLOW RELAXATION jumps |s alsp infini_te. This latter behavior implies that the
probability distribution of the sum dll steps should have a
Slow relaxation in glassy materials has been discussed isimilar form as the probability distribution of a single step.
the context of a model of fractal time transport. Consider theThis property is similar to the properties of fractals and raises
problem of dielectric relaxation of a glass involving the question of when does the whdtbe probability distri-
frozen-in dipoles that can be relaxed only when it is hit by abution py(x) of the sun look like its parts[the probability
mobile defect. This problem involves the first passage timejistribution of a single step(x)]. Levy found for infinite
of random walkers(defects for reaching the origin(the  yariance random walks that the Fourier transformp¢x)
frozen-in dipole. Suppose that there aelattice sites antN 55 the fornf(k) = exp(~|k|?) with S<2. The Gaussian dis-
walkers initially randomly distributed among these sites, NOtyihytion corresponds t@=2, and the Cauchy distribution,
including the origin. The probabﬂﬂ_y .dens@(j() that none f(x)=(2/m)(1+x2) " corresponds tg@=1. This behavior
of the walkers has reached the origin by tiis given by ig reminiscent of our analysis of fractal time where noninte-
1 t N ger exponents entered and signaled self-similar behavior and
1- vf drfOF(r,T)dT

, (31) infinite moments of a probability distribution. In the present
case the moments are spatial rather than temporal.

whereF(r,7) is the probability density that a walker starting L€t us look at a particular case called the Weierstrass ran-

at siter reaches the origin for the first time at timeThe  dom walk;” to illustrate the above discussion. Begin with a

integral allows for the first passage of a walker to the origin"@hdom walk on a lattice with the following probabilities for

in the interval (0¢). The factor of 1V enters as the probabil- Jumps of lengthr, where powers ob give the allowable

ity of a walker starting at a site, and a sum over all possibldUmp lengths

starting points fo_r_a walker is p_erformed. The bracket calcu- -1

lates the probability that a particular walker has not reached ()= =~ z q (8 pit & _pi)- (35)

the origin and it is raised to théth power for the probability 29 =0

that none of the walkers has yet reached the origin. Th

problem is easier in the limi¥ and N—o, with the ratio

c=N/V remaining constant. In this limit, we obt&in
t
CD(t):ex;{ _Czl fOF(I'T)dT occurs(the j=1 term), and abouty such clusters of visited
_ o _ ~ sites are formed before a jump of lengthoccurs, and so on

whereS(t) is the number of distinct sites a walker visits in yntjl an infinite fractal hierarchy of clusters is forméskee
time t. The simplification involvingS(t) was accomplished Fig. 1 for a two-dimensional Weierstrass random walk
by noting that any of the sites from which a walk can reachCompare this to a simple random walk on a square lattice
the origin in a timet are exactly the same sites a walker with jumps to nearest neighbor sitésee Fig. 2 To see the
starting at the origin can reach in tinie The functionS(t) mathematical condition necessary for this behavior to occur,
has the following form for both random walk jumps gov- we examine the Fourier transform pfr):

P(t)=

%\ccording to Eq.(35), jumps an order of magnitude farther
(in baseb) occur an order of magnitude less oftén base
g). About g jumps of size unity are madghe j=0 term

and form a cluster ofy sites, before a jump of length
=ty (32 ¢} jump g
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Despite the beauty of the self-similar trajectories of Levy
flights and the scaling equation fp(k), Levy flights were
largely ignored in the physics literature until receftlpe-
cause of their infinite moments This infinity can be tamed
by associating a velocity with each flight trajectory
segment*®>4We called this random walk with a velocity a
Levy driveto distinguish it from theLevy flightwhere the
walker visits only the end points of a jump and the concept
of velocity does not enter. For a single jump in a Levy flight

Fig. 1. Typical trajectory of a Levy flight random walk. The mean square the walker is only at the starting point and the end point, and

jump size is infinite. The flight is between the set of jump points and thenever in between. For a jump in a Levy drive the walker

lines between points are only a guide to the eye. follows a continuous trajectory between its starting and end
points and a finite time is needed to complete the drive. The
mean square displacement for a jump in a Levy flight is

* . _ infinite (and thus not a useful quantjtyFor a Levy drive the

E q ' cogkb!). (36) random walker moves with a finite velocity and hence its

=0 mean square displacement is never infinite, but it is a time-

Equation(36) is the famous Weierstrass function which is dependent quantity.

everywhere continuous, but nowhere differentiable when ~ In the continuous-time random walk framework for a

qg-1
Bk)= ——
p(k) q

>q. Note that Levy drive, we consideW (r,t) to be the probability density
- . o , of making a jump of displacementin a timet. We write**
q-1 b ~
(ry= 2> rpin=——-2 (—) == 22 P(K)|k=0="*, W(r,t)=y(t|r)p(r), (40)
r=—o q ]:O q (?k
(37) or
whenb?>q. This divergence of the second moméwhich W(r,t)=p(r|t)y(t), (41)

implies the absence of a length sgaie a sign of fractal

self-similar properties. We can write a power series expanwherep(r) andy(t) have the same meanings as before, and
sion of p(k), but the coefficient of thér?) term is infinite.  (t|r) and p(r|t) are conditional probabilities for a jump
As in the case of a fractal time distribution, a scaling equataking a timet given that it is of lengthr, and for a jump

tion is employed: being of lengthr given that it took a timé. A simple choice
1 q-1 for y(t|r) is
P(k)==P(bk)+ —— cosk. (39
q q r
_ , _ Y(tr) =6\ t— 5—|. (42)
We can obtain Eq(38) by using Eq(36) once forp(bk) and V(r)

once forp(k) and seeing that their difference is just a single|, the study of turbulent diffusion Kolmogorov assumed a
cosine term. Theﬁho_mogeneous part of B8B) has a solu-  geiing Jaw implying thatv(r)~r 3. Given this form for
tlo_n of the iormk with f=Ing/Inb. _An |nf|n|t§ Series so- V(r) and the Levy flight condition of an infinite second mo-
lution for P(k) can be found using Mellin transform . .o

techniques:! The series expansion has fractional powers, un- ’
like a Taylor series expansion that only has integer powers. p(r)=~|r|**#, (43

F Ik (I dist P(k) beh
or smallk (large distances) B(k) behaves as with small enough values g8 so that(r?)=9, we find for

B(k)=e 2. (39  the mean square displacemént,

Levy treated a more general case allowing for a bias and t3, for B<1/3,
additional parameters, but the above discussion captures the 5 2+3(1- )12

spirit. AlthoughP(k) has a simple form, exp(k?), explicit (r9=y1 . for 1/3<p<53, (44)
forms forp(x) directly in terms of analytic functions are not t for p=1/3.

derivable in general. Thet? case is called Richardson’s law of turbulent diffusion.

It corresponds to a Levy drive with Kolmogorov scaling for
V(r) combined with a value foB such that the mean time
spent in a segment between two turning points of the trajec-
tory is infinite. The reason that we did not obtain the usual
Levy flight result of(r2(t))=o= is that by using the coupled
space—time memory¥(r,t), we did not calculate(r?)
=—3°p(k=0)/9k? which would be infinite, but used

J exp(kr)y(sr)p(r)dr instead ofp(k). In effect, we calculate
the distance a walker has gone in a titeinstead of the
length of the flight segment. The average flight segment can
be infinitely long, but at a timé the walker has not com-

Fig. 2. A typical trajectory of a walker randomly taking nearest neighbor pleted the flight segment. This type Pf random walk process
steps on a square lattice. has been used to model turbulent pipe ffGw.
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VII. RANDOM WALKS IN NONLINEAR DYNAMICS

The same type of fractal space and time statistics we have
discussed for random systems also appears in d5ynamical sys-
tems, both dissipative and Hamiltoni&f-31518.19.5.20

A long-tailed distribution for dynamical phase rotation
with a constant rotation rate corresponding to a Levy drive
was first presented by Geisel and co-workerEheir inves-
tigation involved the diffusion of the chaotic phastne
pha,se Of_ the, wavefunction Q|ffergnce t_Jetween bOth sides C}‘—fig. 3. The trajectory of the standard map whtk= 1.1 with periodic bound-
the junction in a Josephson junction using a dynamical map.ary conditions in both the- andy-directions. One sees a period 3 orbit in
For a constant voltage across the junction, the phase rotat@shaotic sea. Without the periodic boundary condition inytkirection,
at a fixed rate, but can change direction intermittently; the trajectory would perform a random walk in thedirection.
complete clockwise rotations correspond to a random walk
with a jump of N units to the right, and this jump takes a
time proportional toN. This jump does not occur instanta- dard map and the Zaslavsky migee Eq(48)] have surpris-
neously, but like the hand of a clock there is some timeingly complicated dynamics depending on the strerigtof
needed to complete a circuit. Mathematically, a jump ofthe Kick.
lengthN corresponds to a random drive, and not to a random For K=1.1 for example, a plot ok vs # shows some
flight. When the mean square value Mfis calculated, it is ~ orbits are of the simple closed circular type, while others
found to possess Levy drive behavior, that is, it has an infiwander chaotically. Still other orbits exhibit periodicity, that

nite second moment. An analysis of the data leads to a maig, |X,—Xo| =1, where a particle moves along theaxis |
of the form™® units in p iterations, with the velocity/p. Sticking close to
Xis1=(1+ €)X +axt—1, 45) these orbits provides for the segments of Levy flights, but

because we use periodic boundary conditions, it appears that
with e small. The exponert>1 makes Eq(45) nonlinear.  the particle stays in an almost closed orbit and does not enter
Varying Z Changes the behavior Of the mean Square disp'acénto Phaotic motionS. The fraCta| nature Of these |S|and hiel’-
ment. The iterations of the map tend to approach and clusté¥chies, called Cantori because they form a Cantor-like set of
nearx=0 andx= 1. This behavior can be interpreted as the!li (S€€ Figs. 3 and)4creates complex kinetics with Levy
system remaining in the same rotation state for long time robab|I|t|e§ .Wh'Ch haye been dubt_)ed _strange k|.net|é§.
The number of iterations clustered in a trajectory neal he probablllty densities for Sper!d'”g time in laminar _states
or x=1 depends on the initial condition. Nearby initial con- near penod' 3for K=1.1) and period 5for K_.1'03) orbits .
ditions can lead to vastly different numbers of iterations®'© '80” g-tailed a”f’z_g‘ ave the Levy 9'25_}3”b ut!on asymptotic
needed to leave these regions. A histogram of the times spemrm' Yperiog-3~1 a_nd Yperioa-s~1 =" A finer _resol_u-
in a rotation state yields a long-tailed distribution just as weton ©f the period 3 orbit uncovers a period 7 ortsee Fig.
have used in random walk problems. The result of a statisti?)» @nd @ finer resolution of one of these orbits would find ten
cal analysis averaged over initial conditions is that subislands for each per_|od 7 orbit. We would find thgt islands
are composed of sub-islands down to the resolution of the
t?3, if z=2, computation.
3~ U1 if 3/2<z<2, Predicting these exponents fgi(t) for these long-tailed
. (46)  distributions is difficult. For example, iK=1.1015 rather
tint, if z=3/2, than 1.1, the period 3 orbit under further resolution goes to a
t, for 1<z<3/2, period 16 orbit, rather than the period 7 orbit. Slightly dif-
ferent K values can give rise to very different exponents
ecause the precise island structure changes in a sensitive
manner. Also for differenK values the new orbits do not
anecessarily traverse the hierarchy in the same order. The es-

(ré(t))~

where N represents the one-dimensional distance from th
origin if the rotations were laid out on a line. A positive
value ofr =N means that there weié more full rotations to
the right, than to the left. This behavior corresponds to
constant velocity Levy flight with a long-tailed flight time
distribution between reversals of motion wig(t)~t~1~#
and8=1/(z—1). R S

In the above example, we can go directly fram the :
exponent of the map, to the temporal expongnt1/(1 ' P &
—7) in the mean square displaceméhtn most nonlinear , . ¢
dynamical systems the connection between the equations and 7
the kinetics is not obvious or simple. In fact, for the standard ¥ 7
map which describes a kicked rotdr; " / /

X4 1= X+ 277K sin(2776,) (474 N -

On+1= Ont Xnt1, (47b)
. . Fig. 4. Higher resolution plot of the period 3 island of tke=1.1 standard
there is no apparent exponent for the dynamlcs Of(ﬂ@7 map showing a 7-fold orbit structure. Each of these 7 islands under higher

but noninteger exponents abound in the description of theesolution would reveal 10 subislands. This islands within islands structure
orbit kinetics, hinting at a complex dynamits® The stan-  will continue indefinitely.
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cape times from a level of the hierarchy are not a simple =1.1. Find the period 3 orbits in the chaotic sea and then
function of the distance from the islaRd"> use higher resolution to find the period 7 and period 10

Another example of Levy drives in dynamical systems is orbits. Determine how far down the hierarchy of islands
the orbits in the Zaslavsky map, which describes a kicked you can go.

oscillator}#1? 6. Iterate the four-fold symmetricq=4 case Zaslavsky
Un 1= (Uy+ K sinv,)cosa+ v, sina, (483 map, Eq.(48) with K=6.349972 and look for Levy-type
) ) behavior. See if similar behavior can be found for otler
Vh+1= — (Up T K sinvy)sine+v, cosa, (48b) values. Look at other symmetry cases of the Zaslavsky

where a=2w/q. The orbits form an intricate fractal web, ~ Map-
with g-fold symmetry throughout the two-dimensional, ¢)
ph"’?s.e space._ This map onIy has s'mple trl_gonome_trlc nonlln'1A. Einstein, “On the motion, required by the molecular-kinetic theory of
earities, but like the standard map, it requires noninteger X-peat, of particles suspended in a fluid at rest,” Ann. Pliysipzig) 17,
ponents for its characterization of trajectories. 549-560(1905.
As nonlinear and complex systems become better studied?). PerrinLes Atomes4th ed.(Libairie Alcan, Paris, 1914

it has been found that very intricate trajectories dominate’E. W. Montroll and M. F. Shlesinger, “On the wonderful world of random
transport and mixing in these systems For example this be_walks,” in Studies in Statistical Mechanicsdited by J. L. Lebowitz and

: - . : N E. W. Montroll (North-Holland, Amsterdam, 1984Vol. 11, pp. 1-121.
hav_|or appl;]es. to the Stan?ard maplgnd pf(;ySIF:ally this behhaVZM. F. Shlesinger, B. J. West, and J. Klafter, “Levy dynamics of enhanced
lor Is sought in systems from n,on !near evices to weat ?r diffusion: application to turbulence,” Phys. Rev. Le&8, 1100-1103
patterns. The study of generalizations of random walks in (1987.
stochastic and nonlinear deterministic systems presents marfy. Klafter, M. F. Shlesinger, and G. Zumofen, “Beyond Brownian mo-
new problems and opportunities to advance our knowledgetion,” Phys. Today49, 33—39(1996.

of fluctuations beyond the classic Brownian motion work of 5M. F. Shlesinger, “Fractal time in condensed matter,” Annu. Rev. Phys.
Einstein Chem.39, 269—290(1988.

’G. Pfister and H. Scher, “Dispersive non-Gaussian transient transport in
disordered solids,” Adv. Phy7, 747-798(1978.
APPENDIX: SUGGESTED PROBLEMS 8H. Scher, M. F. Shlesinger, and J. T. Bendler, “Time-scale invariance in

. - . - transport and relaxation,” Phys. Toddy, 26—34(1991J).
1. Write a program to simulate a simple random walk with 9. F. Shlesinger, “Random processes,” in thmcyclopedia of Applied

constant size jumps of equal probability in tle and Physics(Springer-Verlag, Berlin, 1996Vol. 16, p. 45.
y-directions. Start the random walker at the center of &°. Levy,Theorie de L'addition des Variables AleatoiréSauthier-Villars,
circle. Determine how many jumps it takes to exit thellgafésv 393{1-(3 . E Shiesinger. and . W. Montroll “Random walk
f : f P . D. Hu s, M. F. Si , . W. roll, walks

circle of radiusa. Determlr]e how the. exit time of the with self—gimilar clusters,” Prgc. Natl. Acad. Sci. USA8, 3287-3291
Walker depends on the_radlus of the circle. (1981,

2. Write a program to simulate the St. Petersburg gameaw. . shiesinger, G. M. Zaslavsky, and U. Frisch, Liavy Flights and
Make a histogram of your winnings. Determine how your Related Topics in Physi¢Springer-Verlag, Berlin, 1995

mean winnings increase with the number of times that you™. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, “Strange kinetics,”
play. Nature(London 263 31-38(1993.

: %M. F. Shlesinger, J. Klafter, and Y. M. Wong, “Random walks with infi-
3. Compare the shape of the Gaussian and the CaUChy dISnite spatial and temporal moments,” J. Stat. P®/5.499-512(1982.

tributions by plottmg the.dlstnb_unons on the Same graph'ﬁT. Geisel, J. Nierwetberg, and A. Zacherl, “Accelerated diffusion in
NQte that the Cauchy distribution has more weight in its josephson-junctions and related chaotic systems,” Phys. Rev.34ett.
tails so larger values are more probable than for the 616-619(1985.
Gaussian. 16k, Hayot, “Levy walk in lattice gas hydrodynamics,” Phys. Rev.48,

4. For a probability waiting time density of the form of _806-810(1993.

_ 3/ ; _ 1. Klafter, G. Zumofen, and M. F. Shlesinger, “Fractal description of
lﬂ(t) 1/(1+t 2)’ write a program to calculate a se anomalous diffusion in dynamical systems,” Fracta|s389—-404(1994.

quence of waiting times. '_"OW many jumps occur in_ atimeug Zaslavsky, M. Edelman, and B. A. Niyazov, “Self-similarity, renor-
T? IncreaseT to determine how the number of jumps malization, and phase space nonuniformity of Hamiltonian chaotic dynam-
N(T) depends orl. [The answer isN(T)«T¥2 For a _ics,” Chaosl, 159-181(1993.

waiting-time density with a finite first momenk(T) gég"bf::'savfngohnys'fgs}agf Chaos in Hamiltonian Systeftmperial Col

should grow a.ST-] 203, Klafter and G. Zumofen, “Levy statistics in a Hamiltonian system,”
5. Study numerically the standard map, Eg7), for K Phys. Rev. E49, 4873—48771994.
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